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Abstract 

Radar reflectivity contains information about hydrometeors and plays an important 

role in the initialization of convective-scale numerical weather prediction (NWP). In 

this study, a new background-dependent hydrometeor retrieval method is proposed and 

retrieved hydrometeors are assimilated into the Weather Research and Forecasting 

model (WRF), with the aim of improving short-term severe weather forecasts. 

Compared to traditional approaches that are mostly empirical and static, the retrieval 

parameters for hydrometeor identification and reflectivity partitioning in the new 

scheme are extracted in real-time based on the background hydrometeor fields and 

observed radar reflectivity. It was found that the contributions of hydrometeors to 

reflectivity change a lot in different reflectivity ranges and heights, indicating that 

adaptive parameters are necessary for reflectivity partitioning and hydrometeor 

retrieval. The accuracy of the background-dependent hydrometeor retrieval method and 

its impact on the subsequent assimilation and forecast was examined through observing 

system simulation experiments (OSSEs). Results show that by incorporating the 

background information, the retrieval accuracy was greatly improved, especially in 

mixed-hydrometeor regions. The assimilation of retrieved hydrometeors helped 

improve both the hydrometeor analyses and forecasts. With an hourly update cycling 

configuration, more accurate hydrometeor information was properly transferred to 

other model variables, such as temperature and humidity fields through the model 

integration, leading to an improvement of the short-term (0-3 h) precipitation forecasts. 

Keywords: 

Data assimilation, Radar reflectivity, Hydrometeor retrieval, Convective-scale 

numerical weather prediction 
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1. Introduction 

Convective-scale data assimilation (DA) and forecasts are a primary focus and 

challenge of research and operations due to the important role of severe weather 

analyses and forecasts for saving life and property. Compared to conventional 

observations, which are insufficient for resolving convective-scale weather, radar data 

are particularly well-suited as they can capture the occurrence, development and 

dissipation of convection structures with abundant three-dimensional information at a 

high temporal and spatial resolution. It has thus been recognized that the optimal use of 

radar observations critically determines the quality of short-term convective weather 

prediction (Lilly et al., 1990; Sun et al., 2014). 

Radar radial velocity seems to be natural fit for variational (Sun and Crook, 1997; 

Gao et al., 2004) or Ensemble Kalman Filter (EnKF, Tong and Xue, 2005) assimilation 

systems as it is relatively easily transformed into model state variables, while 

reflectivity (Z) assimilation at the convective scale remains a challenge. To assimilate 

radar reflectivity, the model state variables should be transformed to the observed 

reflectivity properly so that a direct comparison between observations and background 

fields can be drawn. One paradigm is using observation operators which convert the 

model variables to the observed ones. Many efforts have been devoted to the 

construction of observational operators for reflectivity (Xiao et al., 2007; Jung et al., 

2008; Gao and Stensrud, 2012; Wang et al., 2019) and their application in both EnKF 

and variational methods has shown promising results. In EnKF methods, highly 

nonlinear operators can be implemented (Putnam et al., 2019). However, in variational 

assimilation systems, the incremental approach is usually adopted, which requires 

linearized observation forward operators. Sometimes the linearization of nonlinear 

observational operators under the variational DA framework will result in significant 

errors (Wang et al., 2013). The other paradigm is to retrieve the model variables directly 

from the radar reflectivity and then assimilate these variables. A variety of studies 

focusing on the assimilation of retrieved humidity found improved analyses and 

forecasts in convective regions (Lopez and Bauer, 2007; Caumont et al., 2010; Wang 
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et al., 2013, Lai et al., 2019). Radar reflectivity also contains information about 

hydrometeors, such as rainwater, snow and graupel, which play a vital role in the 

microphysical processes for NWP (Bauer et al., 2011; Kerr et al., 2015). In order to 

make better use of the hydrometeor information contained in the radar reflectivity, 

many studies have utilized the hydrometeors retrieved from reflectivity for analysis or 

providing initial conditions for convective-scale NWP models (Sun and Crook, 1998; 

Wu et al., 2000; Hu et al., 2006; Yokota et al., 2016; Carlin et al., 2016; Wang et al., 

2018). 

Some earlier studies only considered warm rain processes and retrieved the 

rainwater mixing ratio from reflectivity observations (Sun and Crook, 1998; Wang et 

al., 2013). However, the inclusion of both liquid and ice-phased particles in the analysis 

is important for convective systems, especially deep moist convective storms (Gao and 

Stensrud, 2012). Generally, the dominant hydrometeor type can be determined based 

on the reflectivity and the background temperature thresholds. For example, an 

empirical reflectivity threshold of 32 dBZ is usually used to classify the graupel-

dominant (>=32 dBZ) or snow-dominant (<32 dBZ) regions above the freezing level 

(Lerach et al., 2010; Pan et al., 2016). Besides reflectivity and temperature thresholds, 

additional observations have been used to improve the identification of hydrometeors 

types. Wang et al. (2018) discerned the graupel-dominant regions by incorporating 

simulated flash extent densities (FED) data from the Feng-Yun-4 geostationary satellite. 

Dual-polarization radar observations have also been used to improve the accuracy of 

hydrometeor classification (Zhang et al., 2019; Matsui et al., 2019). Once the dominant 

species has been defined, the total reflectivity can then be partitioned proportionally for 

multiple hydrometeor variables. The mixing ratio (q) of each hydrometeor is then 

obtained according to a Z-q formula (Carlin et al., 2016). For example, in the 

hydrometeor retrieval method adopted in the indirect assimilation of reflectivity in the 

current WRFDA, the proportion of snow and graupel is a fixed value and the 

contribution of rainwater increases linearly from 0 to 1 between -5 ℃ to 5 ℃; 

trapezoidal weighting functions corresponding to the ambient temperature profile were 
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also utilized for graupel and snow aggregates in some studies (Zrnić et al., 2001; Wang 

et al., 2018). 

The parameter settings of Z and T thresholds to classify hydrometer species in the 

above hydrometeor retrieval method are empirical, and when multiple species coexist, 

the partitioning process is also based on empirical rules. In actuality, the distribution 

characteristics of hydrometers varies in different regions and weather situations, so the 

fixed thresholds and proportion are likely not applicable to all cases. These empirical 

rules result in great uncertainty of the retrieved hydrometeors, which may limit their 

value for storm-scale NWP (Gao et al., 2009). Therefore, how to determine the 

hydrometeor types and the proportion of each species during the reflectivity retrieval 

under different weather conditions remains a problem worth exploring. 

To overcome these problems, we propose a new method that aims to improve the 

hydrometeor retrieval from radar reflectivity by making the process adaptive. In the 

new scheme, the hydrometeors are retrieved according to their real-time contributions 

to reflectivity at different reflectivity intervals and heights from the model background 

fields so that the retrieval parameters (i.e., composition and proportions of the 

hydrometers) are adaptively adjusted with the evolution of weather conditions. Then, 

the retrieved hydrometeors are assimilated into the WRF model with the goal of 

improving the convective-scale analyses and forecasts. For the data assimilation 

method, the 3DVar method developed for the WRF model is chosen instead of more 

advanced methods like 4DVar, EnKF, or hybrid methods because fast and efficient 

analysis is essential for convective-scale weather where analyses and forecasts need to 

be delivered quickly to the public. Finally, the accuracy of the hydrometeor retrieval 

method and its impact on the subsequent assimilation and forecast is examined through 

observing system simulation experiments (OSSEs). 

This paper is organized as follows. First, the 3DVar method, reflectivity formula, 

and the newly proposed “background-dependent” hydrometeor retrieval method are 

presented in section 2. Then, model configurations and experimental design are given 

in section 3. The accuracy of the background-dependent hydrometeor retrieval method 
5 



 
 

        

        

   

   

       

       

        

  

     

           

              

        

   

        

     

       

         

          

  

       

     

      

                          

          

       

140

145

150

155

160

138 and its performance on analysis and subsequent short-term forecasting are discussed in 

139 section 4 and 5. Finally, conclusions and discussions are given in section 6. 

2. Methods 

141 2.1 3DVar assimilation of radar observations 

142 In this study, the three-dimensional variational (3DVar, Barker et al., 2012) method 

143 is employed to assimilate radial velocities and hydrometeors retrieved from radar 

144 reflectivity. The optimal analysis of 3DVar is obtained by iteratively minimizing the 

following cost function: 

146 1 T Tb 1- b 1 o 1- oJ ( )x = J + J = x - x B x - x + H x - y R H x -y ，b o ( ) ( ) ( ( )  ) ( ( )  ) (1)
2 2 

147 where �! and �" are the background and observational terms, respectively. The vector 

148 x is the analysis model state variables, xb is the background state, yo is the observation 

149 field, H is the observation operator, and B and R are the background error covariance 

and the observation error covariance matrices, respectively. 

151 Observation yo includes the radial velocity and retrieved hydrometeors. For the 

152 indirect assimilation, reflectivity is converted to hydrometeor mixing ratios of rain, 

153 snow and graupel. These hydrometeors are then assimilated through the 3DVar system, 

154 and the analysis field is obtained through the minimization of the cost function, with 

the accuracy of the data assimilation dependent on the joint action of the background 

156 and observation error covariances. 

157 2.2 Hydrometeor retrieval method for radar reflectivity 

158 The equivalent reflectivity factor (Ze) is obtained by summing the backscattering 

159 from particles in the atmosphere (Tong and Xue, 2005): 

= (  )  Z Z q  Z+ (  )  q Z+ (  )  q ， (2) e r s g 

161 where Z(qr), Z(qs) and Z(qg) are the reflectivity factors (here in linear units of mm6 m -

162 3) of rain, snow and graupel, respectively. Calculation of the equivalent reflectivity 
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180

185
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164 

factors contributed by each species can be simplified to a Z-q relation, which is 

expressed most generally as 

)1.75 (Z q ) = a (rq ,x x x (3) 

166 where r is the air density, qx is the mixing ratio of hydrometeor species x (e.g., 

167 

168 

169 

“r” for rain, “s” for snow or “g” for graupel), a is the coefficient determined by the x 

xdielectric factor, density and intercept parameter of hydrometeor , and Rayleigh 

scattering is assumed to occur. As in previous studies, a is frequently treated as a x 

171 

172 

173 

constant, where a (for rain) is 3.63×109 (Smith et al., 1975), a (for graupel) isr g 

4.33×1010 (Gilmore et al., 2004). However, the coefficient is considered to be 

temperature dependent for snow: when the temperature is greater than 0°C, the 

coefficient for wet snow a is 4.26×1011, while for dry snow, which occurs at s

174 temperature less than 0°C, as is 9.80×108 (Gunn and Marshall, 1958). 

176 

177 

178 

qxIn the hydrometeor retrieval algorithm, need to be calculated from a single 

measurement of Ze. One of the important issues is to determine Cx, which is the ratio of 

each species’ contribution to the total reflectivity. The component of reflectivity for 

each hydrometeor can then be partitioned by the following formula: 

179 ( )Z q  = Z C× .x e x (4) 

181 

Finally, substituting Eq. (4) into Eq. (3), the mixing ratio of each species can be 

obtained with 

182 qx 
æ æ Z C× ö ö 

e x= exp lnç /1.75 /ç ÷ ÷ r.ç ÷aè è x ø ø 
(5) 

183 

184 

As mentioned in the introduction, Cx in previous studies is generally based on the 

reflectivity (Z) and temperature (T); for convenience, this empirical Z and T based 

method is called HyRt-ZT. The HyRt-ZT method in the current WRFDA is employed 
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186 in this study as a reference. In this scheme, the proportion of the snow and graupel is a 

187 fixed value that measured by the ratio of coefficients for snow and graupel, and the 

188 contribution of rainwater increases linearly from 0 to 1 between -5 ℃ to 5 ℃ (Gao and 

189 Stensrud, 2012). 

2.3 Background dependent retrieval method 

191 In fact, a fixed Cx is not appropriate for all areas and weather conditions. The 

192 composition of the hydrometeor field varies at different heights with different 

193 reflectivity values under different weather conditions. Therefore, we sought to build a 

194 hydrometeor retrieval method whose parameters update adaptively with the region and 

weather conditions in proportion to the contribution of each species from the 

196 background field. 

197 First, for each hydrometeor type, we calculate the average reflectivity in the 

198 background field at different altitudes (zi) and reflectivity intervals (refj) through 

199 Zx i ,z ref j 
1.75 = a ´ (r ×q ) ，x i ,z ref j x i ,z ref j 

(6) 

where r 
i ,z r  jef and 

qx i ,z ref j are the average air density and hydrometeor mixing ratios 

201 at grid points within the reflectivity interval (refj) at height zi. In addition, the reflectivity 

202 intervals in this study areset as follows： ���#: < 

203 15���; ���$: 15~25���; ���%: 25~35���; ���&: 35~45���; ���': ≥ 45���. 

204 Then, Eq. (6) can be substituted into the following Eq. (7) to calculate the Cx in the 

background field: 

206 C = Z（ i ,x z ref j） x i ,z ref j 
/ Z( r i ,z ref j 

+ Zs i ,z ref j 
+ Z .g

i ,z ref  )j (7) 

207 where Zr, Zs and Zg are the contributions to equivalent reflectivity Ze by rainwater, snow, 

208 and graupel, respectively. After obtaining Cx from Eq. (7), the hydrometeor mixing 

209 ratios can be retrieved according to Eq. (5). Considering the possibility that the 

background may completely miss theconvection, a minimum number of grid points at 

211 which the reflectivity values are great than a threshold refj at height zi is set to calculate 
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Cx. In this study, when the number is above 10, Cx is calculated using Eq. (7), otherwise 

a default value calculated from a one-month forecast climatology is used. 

In addition, this study imposes a limitation on the retrieval process: only when there 

is strong convection at upper levels (i.e., reflectivity > 45dBZ, T<-5 ℃) can graupel 

appear below the melting layer. This method is called the “HyRt-BG” method hereafter. 

3. Experimental design 

3.1 Model configuration 

The Advanced Research Weather Research and Forecasting model (ARW-WRF; 

Skamarock et al., 2008) V3.9.1 and its assimilation system WRFDA V3.9.1 are adopted 

in this study. The model is configured with two nested-grid domains at 9-km (D01) and 

3-km horizontal grid spacings (D02) with 361×301 and 421×321 grid points, 

respectively (Fig. 1). Each domain features 41 vertical eta levels with a model top set 

at 50 hPa. The selected physical parameterization schemes mimic the operational 

settings used at the Meteorological Bureau of Shenzhen Municipality, China (Huang et 

al., 2018): the Thompson microphysical parameterization scheme (Thompson et al., 

2008), Grell-Freitas cumulus parameterization scheme (Grell and Freitas, 2014), the 

Yonsei University PBL physics scheme (Hong et al., 2004), RRTMG longwave and 

shortwave radiation schemes (Iacono et al., 2008), and the Unified Noah land surface 

scheme (Tewari et al., 2004). The cumulus scheme is only activated on the coarser grid. 

The National Meteorological Center (NMC) method (Parrish and Derber, 1992) is 

adopted to estimate the background error covariance. The statistical samples are the 

differences between 24 h and 12 h forecasts valid at the same time during a 1-month 

period from 15 April to 15 May, 2016. The selected control variables in this study are 

eastward and northward velocity components (U, V), surface pressure (Ps), temperature 

(T) and pseudo relative humidity (RHs, water vapor mixing ratio divided by its saturated 

counterpart in the background field). U and V are selected as the momentum control 

variables to better assimilate radar radial velocity observations at convective scale (Sun 

et al., 2016; Shen et al., 2019). The hydrometeor control variables used in this study for 
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reflectivity assimilation are rainwater, snow and graupel mixing ratios (Wang et al., 

2013). 

3.2 Setup of OSSEs 

3.2.1 Truth Run and simulated observations 

The truth simulation (referred to as the Truth Run hereafter) is used for generating 

simulated observations. In this study, a multi-cell storm in south China from 1200 UTC 

to 2000 UTC on 7 May 2017 was selected as the case of interest. Fig. 2 illustrates the 

schematic diagram of the OSSEs. First, the Truth Run is defined. The Truth Run is 

initialized at 0600 UTC, and the initial and lateral boundary conditions are provided by 

the 1°×1° NCEP final analysis (FNL) data. After a 6-hour spin-up process, conventional 

observations from the Global Telecommunication System (GTS) are assimilated in D01 

and conventional data as well as radial velocity and reflectivity are assimilated in D02 

beginning at 1200 UTC.An 8-hour forecast is then launched. The first hour forecast 

(at 1300 UTC) was discarded because the model variables were spinning up during this 

time period. 

The forward operator for simulated radial velocity follows Xiao et al. (2005) and 

the forward operator for simulated reflectivity is given by Eqs. (2)-(3). The 3D wind 

field from the Truth Run is sampled by 7 pseudo-radars at 9 elevation angles (0.5°, 1.5°, 

2.4°, 3.4°, 4.3°, 6.0°, 9.9°, 14.6° and 19.5°) corresponding to the operational WSR-88D 

scanning strategy VCP21 to obtain synthetic radial velocity data every hour from 1300 

UTC to 2000 UTC. In contrast, the calculation of radar reflectivity is done on each 

model grid; no geometric transformation between radar observation space and model 

space is considered. This choice results in simulated observations that are as accurate 

as possible for evaluating of the retrieval method, and avoids interpolation errors of 

reflectivity introduced while converting between the model grid and the radar 

observation points. 

3.2.2 Experiment design 
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First, the CTRL experiment was generated to provide the benchmark for the data 

assimilation experiments. In CTRL, the initial fields of D02 at 0600 UTC were 

interpolated from D01, and no radar data was assimilated. Then, three DA experiments, 

Exp-ZT, Exp-BG, and Exp-BG-Err, were performed to demonstrate the effectiveness 

of the background hydrometeor retrieval on short-term convective-scale weather 

forecasts (Fig. 2). In each DA experiment, the simulated radial velocity and reflectivity 

observations were assimilated hourly and a 3-hour forecast was then conducted in each 

cycle. The background fields at 1300 UTC were same as that of CTRL, while later they 

were provided by the 1-hour forecast from the previous cycle. In Exp-ZT, the 

WRFDA’s default hydrometeor retrieval scheme (Wang et al., 2013) was employed, 

while the new proposed background-dependent hydrometeor retrieval scheme was 

adopted in Exp-BG. The third DA experiment, Exp-BG-Err, was carried out with a 

different microphysics scheme – the NSSL two-moment microphysics scheme 

(Mansell, 2010) – used in the WRF model forecast. The purpose of this experiment was 

to test the sensitivity of the background-dependent retrieval method to model errors. 

The retrievals, analyses and forecasts are then verified against the Truth Run to assess 

the accuracy of the retrieval and examine the impact of the retrieved hydrometeors on 

the analyses and forecasts. 

4. Hydrometeor Retrievals 

4.1 Hydrometeor distribution in background field 

In this section, the retrieved hydrometeor mixing ratios (i.e., qr, qg, qs) from the two 

different retrieval methods were compared to those from the Truth Run. 

First, the evolution of the convection in the Truth Run is briefly described (Fig. 3). 

At 1300 UTC, a series of convective cells formed in the middle of the domain and two 

organized convective systems were present in the northeast part of the domain. By 1500 

UTC, the cells in the middle of the domain intensified and became well organized, and 

the convection in the north weakened and moved out of the domain. By 1700 UTC, the 
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systems had moved eastward and took on a linear structure. Finally, the systems 

gradually moved out of the Guangdong (GD) province and began to weaken and 

dissipate at 2000 UTC, while a strong convective system in the west was moving 

eastward. 

In Exp-BG, the distributions of hydrometeors were first calculated from the 

background field. They were separated by model level and reflectivity interval in each 

analysis time, with the result at 1500 UTC shown in Fig. 4. The overall characteristics 

below 35 dBZ (Fig. 4a-c) are similar: the reflectivity below the 12th model level is 

mainly contributed from rainwater and above the 15th level is from dry snow; the 

contribution of wet snow near the melting layer increases gradually with increasing 

reflectivity threshold. For reflectivity larger than 45 dBZ (Fig. 4e), graupel accounts for 

a very large proportion, while dry snow accounts for less than 10% of the reflectivity. 

In the melting layer, the proportion of wet snow is the largest when the reflectivity is 

above 15 dBZ (Fig. 4b-e). Since it is from the same convective system, the distribution 

of Cx at other times is only slightly different (not shown). These results show that the 

contribution of each species varies appreciably in different reflectivity ranges and levels, 

indicating that a fixed threshold shouldn’t be used for partitioning different reflectivity 

observations across hydrometeors even in the same weather regime. 

4.2 Comparison of the retrieval results 

The hydrometeor retrievals in the Exp-ZT, Exp-BG, and Exp-BG-Err at 1500 UTC 

and 1700 UTC were compared (Fig. 5). In Exp-ZT (Fig. 5b, f), the distributions of the 

retrieved snow and graupel are not reasonable because of the fixed proportions of snow 

and graupel adopted in HyRt-ZT scheme. In the area where a large quantity of snow 

should exist, the contribution to reflectivity was overly allocated to graupel, resulting 

in a great underestimation of snow in areas with high reflectivity values and an 

overestimation of graupel in areas with low reflectivity values. Great deviations of 

hydrometeors from Truth Run near the melting layer can also be seen in Exp-ZT, 

indicating that the fixed empirical rules cannot correctly partition the snow and graupel 

contributions in simulated reflectivity observations. This can induce large errors in the 
12 
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hydrometeor retrievals and their subsequent assimilation. In Exp-BG (Fig. 5c, g), 

however, even though some deviations can be seen in mixed-hydrometeor regions, the 

overall estimation of the three species is much closer to the Truth Run (Fig.5a, e). The 

improvement to the retrieval accuracy for the new scheme over the old one illustrates 

the importance of correctly partitioning the reflectivity for hydrometeor 

retrievals. However, the benefits of the new scheme may be overestimated in this 

experiment since model errors are not considered. Results from Exp-BG-Err show that 

the retrieval errors in are increased when adding model error, especially for graupel in 

upper levels (Fig.5d) and beneath the melting layer (Fig.5h), but the retrievals are still 

much closer to the Truth Run than that Exp-ZT. This demonstrates that the method can 

tolerate model errors to some degree. 

To quantitatively evaluate the performance of the two methods, the bias and root 

mean square error (RMSE) were computed for the retrieved qr, qs and qg from the HyRt-

ZT, HyRt-BG, and HyRt-BG-Err respectively. Here the bias simply refers to the 

difference between the retrievals and the Truth. The bias and RMSE were computed at 

different mass mixing ratio thresholds (0.1, 0.3, 0.6, 1.0, 2.0, 5.0 g kg−1) for the entire 

domain (D02) averaged over the whole duration of the simulation. For rainwater (Fig. 

6a, d), the three experiments perform similarly, although HyRt-BG and HyRt-BG-Err 

slightly underestimated the rainwater when larger than 2 g kg−1 (about 10%). Snow is 

seriously underestimated in Exp-ZT (Fig. 6b, e), and the negative bias increases with 

the thresholds. The underestimation in Exp-ZT is more than 40% for greater than 2 g 

kg−1 and its RMSE is relatively high. This can be explained by the fixed proportion of 

reflectivity attributed to graupel in areas with high reflectivity values, which also leads 

to an overestimation of graupel in areas with the low reflectivity values. For graupel 

(Fig. 6c, f), besides the overestimation in areas with low reflectivity values, there is a 

similar underestimation in areas with large reflectivity values for HyRt-ZT (> 16%). 

The HyRt-BG has much smaller errors for both snow and graupel, which benefits from 

the successfully hydrometeor identification and reflectivity allocation. Considering 

model errors in Exp-BG-Err, the results of BIAS and RMSE for rain and snow become 
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slightly worse than in Exp-BG (Fig. 6a, b, d, e), and for graupel, the retrieval errors 

increase a lot (Fig. 6c, f). So although the background hydrometeor retrieval method is 

slightly sensitive to model errors, the results still show some advantages over HyRt-ZT. 

5. Short-term forecasts with the data assimilation of hydrometeor retrievals 

5.1 Analysis and forecast of hydrometeors 

To test the effects of the different hydrometeor retrieval methods on the short-term 

forecast of the MCS, the hydrometeor retrievals related to CTRL and three DA 

experiments HyRt-ZT, HyRt-BG and HyRt-BG-Err were assimilated into the model in 

one hour DA cycles, respectively, and three hour forecasts were launched every hour. 

(1) Hydrometeor diagnostics 

Fig. 7 shows the analysis fields of rain mixing ratio at about 2 km AGL and snow 

and graupel mixing ratios at about 6 km AGL at the time of the last analysis (1700 UTC) 

for the Truth Run and the three DA experiments. The differences for rain look very 

small because the retrieval processes are almost same in the three DA experiments (Fig. 

7a-d). For Exp-ZT (Fig. 7j), the proportion of graupel is overestimated when the 

reflectivity values are; consequently, the snow is greatly underestimated (Fig. 7f). In 

comparison, snow is only slightly underestimated (Fig. 7g) while graupel looks 

reasonable (Fig. 7k) for Exp-BG. So benefit of proper partitioning of reflectivity 

information among different hydrometeors is clearly demonstrated in Exp-BG. Only 

small differences in the hydrometeor fields between Exp-BG (Fig. 7c, g, k) and Exp-

BG-Err (Fig d, h, l) can be distinguished, indicating that the added model errors don’t 

appreciably impact the hydrometeors analysis at these levels. The vertical profiles of 

the analysis fields were also evaluated, with the conclusion quite similar to that of the 

horizontal analysis (not shown). 

(2) 0-1h hydrometeor forecast 
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The hydrometeor fields in convection systems evolve rapidly and have low 

predictability (Fabry and Sun, 2010), so we first examine the impact of hydrometeor 

assimilation on the short-term forecast initiated at 1500 UTC. 

At 15 min into the forecast, the ranges of rainwater, snow and graupel in both Exp-

ZT and Exp-BG are closer to the Truth compared to the CTRL, which means that the 

data assimilation plays a positive role in the initial forecast (Fig. 8). But even if the 

vertical composite reflectivity for Exp-ZT and Exp-BG look similar (not shown), the 

internal structure of the hydrometeors are very different (Fig 8g, h, i, vs j, k, l). The 

simulation of rainwater, snow and graupel in the Exp-BG is much closer to the Truth 

Run. After 30 min into the forecast, the regions of nonzero hydrometeor fields in Exp-

ZT become smaller than at 15 min. For the Exp-BG forecast, even though there is a 

slight deviation in position, the prediction of the convective cells overall is much better. 

At 60 min (Fig 8f, i, l), all three types of hydrometeors in Exp-ZT have dissipated more 

compared to the Truth Run, while Exp-BG performs the best. Comparing Exp-BG-Err 

with Exp-BG, snow above the melting level and rain below remain in good agreement, 

while less graupel and much more supercooled water exist due to the model integration 

using the NSSL two moment microphysics scheme. 

Vertical cross sections of the temporal evolution of hydrometeors during the first 60 

min are presented in Fig. 9. In the Truth Run, the content of all three types of 

hydrometeors gradually decreases with forecast time (Fig. 9a-c) because the convective 

system slowly moves out of the D02 domain. In general, the hydrometeor prediction in 

Exp-BG is the closest to the Truth Run. For rainwater, the difference between Exp-ZT 

and Exp-BG is not significant at the analysis time. However, a sharp increase in 

rainwater appears in Exp-ZT as soon as the model integration starts (Fig. 9g), which 

may be caused by the rapid melting and falling of graupel from upper levels (Fig. 9i). 

Snow is largely underestimated in Exp-ZT, and it is not until 30 min that the model 

produces relatively weaker snow prediction. In Exp-BG, in contrast, the benefit of the 

assimilation of retrieved snow is obvious in the first 30 min of the forecast (Fig. 9k). 

For graupel, Exp-BG has a more reasonable estimation at the initial time and the 
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forecast (Fig. 9l), but Exp-ZT has an overestimation at the initial time and also 

overforecasts for the first 30 min. By adding model errors in Exp-BG-Err, rainwater 

and graupel weaken more quickly, while the evolution of snow is still very reasonable. 

Even though the advantages of HyRt-BG are diminished, the evolution of each 

hydrometeor in Exp-BG-Err is still closer to the truth run than that in Exp-ZT. 

Despite the improvements in Exp-BG, the hydrometeors still dissipate rapidly and 

decrease by nearly half at 60 min, indicating that hydrometeors have a short duration 

without the updating or support of the related thermal and dynamic fields. The rate of 

dissipation of the hydrometeors is relatively slower in Exp-BG (see slope in Fig 9j-l), 

which may be due to the hydrometeor fields in Exp-BG being relatively more balanced 

with other model variables because they are derived from the background field. 

5.2 Accumulated field and quantitative evaluation in the cycle 

(1) 0-3h reflectivity forecast 

Fig. 10 shows the simulated composite reflectivity fields from Truth Run, CTRL, 

Exp-ZT, Exp-BG, and Exp-BG-Err. These forecasts start at 1500 UTC in the middle of 

the cycle. In the simulated truth composite reflectivity fields (Fig. 10a, b, c), the MCSs 

are propagating southeastward slowly. Two major convective systems can be seen in 

Fig. 5a: one is in the center of the domain (labeled system A) and the other is in the 

northeast (labeled system B). In the CTRL, the prediction for system A is too weak, 

and system B is totally missed. In the two DA experiments, the region and intensity of 

both systems are substantially improved compared to the Exp-CTRL. One hour into the 

forecast (1600 UTC), the reflectivity core (system A) in Exp-ZT is weaker and narrower 

than Exp-BG, which may be caused by faster dissipation of the hydrometeors 

mentioned in section 4.2.2. By the second hour of the forecast (1700 UTC), the 

difference between Exp-ZT and Exp-BG is reduced, but Exp-BG still has broader and 

greater nonzero reflectivity coverage in system A, indicating that the convective 

systems in Exp-BG are more organized. After 3 hours, though better than CTRL, both 

Exp-ZT and Exp-BG lose the strength of the convection due to the hydrometeor 
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dissipation. As we can see from Fig. 10m-o, adding model errors in Exp-BG-Err, the 

improvements brought by the background dependent retrieval method are still clear in 

1h forecast, but not obvious after that. This may be because the differing microphysics 

scheme plays a significant role in the forecast over time. 

(2) 0-3 h precipitation forecast 

The quantitative precipitation forecast is an important indicator for evaluating the 

benefit brought by assimilation, so the hourly precipitation for each experiment is 

further evaluated. Fig. 11 shows the hourly accumulated precipitation of the last cycle 

for the Truth Run, CTRL, Exp-ZT, Exp-BG, and Exp-BG-Err. The precipitation is not 

well simulated by the CTRL (Fig. 11d-f), and the precipitation forecast is greatly 

improved after the retrieved hydrometeors are assimilated in Exp-ZT and Exp-BG 

experiments. During the first hour, both perform similarly (Fig. 11g, j). During the 

second hour, the regions of heavy rainfall (>15mm/h) in both Exp-ZT and Exp-BG (Fig. 

11h, k) agree well with those in the Truth Run (Fig. 11b), and the Exp-BG performs 

much better. In the last hour, although the rainfall in Exp-ZT is much stronger than that 

of CTRL (Fig. 11f vs i), its intensity is still far less than the Truth Run. The Exp-BG 

performs the best among all experiments. For Exp-BG-Err, the rainfall is reasonable in 

the first hour forecast, but is weaker at later time compared with both Exp-ZT and Exp-

BG due to mode errors. 

To quantitatively evaluate the precipitation forecast of different experiments, the 

Fractions Skill Score (FSS, Roberts and Lean, 2008) at different thresholds are 

calculated against the Truth Run for each experiment. The FSS is more tolerant of small 

displacement errors and more suitable for precipitation evaluation with fine resolution 

grids (e.g., Fierro et al., 2015). In this study, the radius for FSS is about 15 km (5 

neighborhood grid cells), and the evaluating area covers where the simulated 

reflectivity observations are greater than zero. The FSS of hourly accumulated 

precipitation with different thresholds (2.5, 5, and 15 mm) for CTRL, Exp-ZT, Exp-

BG, and Exp-BG-Err are presented in Fig. 12. In general, the three DA experiments 

achieved higher FSS compared to CTRL at all thresholds in each forecast period. The 
17 
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more accurate analysis of the hydrometeor fields in Exp-BG resulted in the highest FSS 

at almost all thresholds compared with Exp-ZT except in the first hour and at lowest 

threshold (2.5 mm). During the first hour, the overall FSS in Exp-BG-Err at 2.5 and 5 

mm is marginally the highest among all of the experiments, so the negative impact of 

model errors remains small for the first hour precipitation forecast. However, the model 

errors caused by a different microphysics scheme does reduce the forecast scores for 1-

2 and 2-3 h forecasts. In general, Exp-BG performs better than Exp-ZT in most 

instances, even when including model error. 

(3) RMSEs in the cycle 

The average root-mean-square errors (RMSEs) of the CTRL, Exp-ZT, Exp-BG and 

Exp-BG-Err against the Truth Run over the 5 cycles are calculated for all three 

hydrometeor variables and water vapor (Fig. 13). At the analysis time (t=0), all three 

DA experiments have smaller errors of rain and snow than CTRL (Fig. 13a, b), while 

Exp-ZT has the largest errors for graupel because the reflectivity is wrongly attributed 

to graupel (Fig, 13c). The benefits of assimilating reflectivity decay rapidly in the first 

hour, and the differences in the hydrometeors between the DA experiments and CTRL 

narrow over time. The errors for snow in both Exp-BG and Exp-BG-Err (Fig. 13b) are 

the smallest over almost the entire 3-h time. This indicates that the well retrieved snow 

may last longer with the model integration. The assimilation of retrieved hydrometeors 

also helps improve the forecast of water vapor in Exp-BG, but with model errors 

included, it has a negative impact on the forecast of water vapor (Fig. 13d). Out of all 

three experiments, Exp-BG has the smallest forecast errors for water vapor, which may 

be a result of a more accurate analysis of hydrometeors in Exp-BG. The assimilation of 

retrieved hydrometeors may contribute to the gradual adjustment of other model fields 

like temperature, which leads to an improvement of the short-term precipitation forecast. 

5.3 Diagnosis of temperature and moisture fields 
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In order to further identify the reason why the hydrometeor assimilation can improve 

the prediction beyond one hour, the temperature and moisture fields from the model 

and their response to the hydrometeors field are discussed below. To simplify the 

following discussion, Exp-BG-Err is not discussed. 

Fig. 14 presents the vertical cross sections of temperature difference between each 

DA experiment and the Truth Run over the rainfall center from 24.2°N to 24.8°N in the 

last cycle. For the analysis, the differences in Exp-BG (Fig. 14d) are much smaller than 

those in Exp-ZT (Fig. 14a). In the 10-min forecast, the temperature in the middle levels 

in Exp-ZT becomes much colder than in Exp-BG because of the rapid melting of the 

ice particles, especially graupel. In the 3h forecast, the temperature differences of the 

two DA experiments narrows. But the Exp-BG still outperforms Exp-ZT in term of 

prediction of the MCS (between 114°E and 116°E). This leads to a better accumulated 

precipitation forecast in Exp-BG. 

The relative humidity for the Truth Run, and the difference between the two DA 

experiments and the Truth Run over the rainfall center from 24.2°N to 24.8°N in the 

last cycle are shown in Fig. 15. At the analysis time, it is obvious that relative humidity 

in Exp-BG is closer to the truth than that in Exp-ZT. After 10 min of model integration, 

the melting and falling of graupel makes the upper-level air drier and the rapid increase 

of rain makes the lower-level air moister in the precipitation area (about 112°E~114°E) 

in Exp-ZT, while smaller differences can be seen in Exp-BG. After the 3-hour 

integration, the Exp-ZT and Exp-BG perform similarly, but an important improvement 

is that the moisture field between 850 hPa and 700 hPa ahead of the MCS (about 114°E 

~116°E) has been enhanced in Exp-BG. Better humidity conditions in Exp-BG had a 

pronounced effect on the rainfall process. 

This section shows that the impact of a better hydrometeor analysis on model forecast 

is primarily limited to the first hour. However, by cycling the analyses, the temperature 

and humidity fields are gradually influenced and the subsequent precipitation prediction 

is ultimately improved. 
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6. Conclusions 

In this study, a background-dependent hydrometeor retrieval scheme was proposed 

to improve the accuracy of the hydrometer classification, analysis, and forecast. The 

main idea is to adaptively determine the contributions of the hydrometeors to the 

reflectivity according to the background field. The hydrometeor retrieval method was 

compared to the existing retrieval scheme in WRFDA through OSSEs. 

The proportions of each hydrometeor species were calculated from the background 

fields and the accuracy of the retrieved hydrometeors from both schemes were first 

evaluated. It was found that the contribution of each hydrometeor species to the 

reflectivity varies widely in different reflectivity ranges and different vertical levels. 

This indicates that fixed parameters should not be used for calculating the contributions 

of each hydrometeor species to reflectivity even in the same background weather 

regime. By incorporating the background information, the retrieval reflectivity 

partitioning parameters became adaptive and the hydrometeor retrieval accuracy was 

greatly improved even when considering model error, especially in regions of mixed 

species. 

The retrieved hydrometeors from both retrieval methods were then assimilated 

utilizing 3DVar with an hourly update cycling configuration. A better analysis of snow 

and graupel were obtained when the new retrieval method was used. Results show that 

both of the DA experiments improved the forecast of hydrometeors in the first hour, 

but the hydrometeors declined rapidly with the model integration. However, the 

additional data assimilation cycles helped the hydrometeors persist in Exp-BG. The 

reason for these improvements may be that Exp-BG implicitly included the model 

constraints, and thus the retrieved hydrometeor fields are relatively more balanced with 

other model variables. 

The improvement of the hydrometeors’ forecast in this study was mainly 

concentrated within the first hour, but with the hourly update cycling configuration, it 
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further affected other variables like temperature and humidity through thermodynamic 

and microphysical processes. The improvement of the temperature and humidity fields 

was achieved and had a pronounced effect on the rainfall processes, so that the 

assimilation of retrieved hydrometeors ultimately improved the short-term forecast of 

reflectivity and precipitation. 

Though our proposed scheme shows promising results, problems still exist. First, the 

improvement of hydrometeor fields has a relatively short duration, which can be 

improved by considering multivariate correlation among hydrometeors and other 

analysis variables in the static background error or introducing a flow-dependent 

background error through a variational-ensemble hybrid method (Pan et al., 2018; 

Meng et al. 2019). Second, due to the lack of real observations of sufficiently high 

spatial and temporal resolution, the new scheme was only evaluated through OSSEs. 

Although its value has been proved, further testing is also needed using real data cases. 

Finally, dual-polarization radar data are an important additional source of information 

for classification of hydrometeors beyond Z, so it is likely that better retrievals and 

forecasts can be achieved with the assistance of polarimetric information. 
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Figure captions 
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792 Fig. 1. Domain size and radars used in the study. The range for each radar is shown roughly 

793 by the blue circle. 
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Fig. 2. Schematic diagram showing the assimilation and forecast cycles in the OSSEs. 

Fig. 3. Composite radar reflectivity fields of the Truth Run in domain D02. The valid forecast 
time is shown above each panel. The black lines in (b) and (d) indicate the locations of the 
vertical cross sections shown in Fig. 5 and 6. The small blue box in (b) indicates the 
hydrometeor calculation region in Fig. 9. 

Fig. 4. The vertical profiles of each hydrometeor’s contribution to the total reflectivity in 

different reflectivity ranges at 1500 UTC. (A)- (e) shows the distribution of Cx with height in 

different reflectivity intervals, where ���#: < 

15���; ���$: 15~25���; ���%: 25~35���; ���&: 35~45���; ���': ≥ 45���. 

Fig. 5. Vertical cross-sections of the hydrometeor mixing ratio fields: qg (color shading), qs 

(blue contours), qr (green contours) from (a), (e) Truth Run; (b), (f) Exp-ZT; (c), (g) Exp-BG; 
(d), (h) Exp-BG-Err. Legend for the color shadings for qg (g kg−1) is shown on the bottom. The 
contour intervals of qs (g kg−1) are 0.1, 0.2, 0.5, 1.0, 2.5. The contour intervals of qr (g kg−1) are 
0.01, 0.1, 0.2, 0.5, 1.0. The locations of the vertical cross sections are denoted by the black lines 
in Fig. 3. (A)-(d) is valid at 1500 UTC and (e)-(h) is valid at 1700 UTC. The dashed black line 
indicates where the temperature is 0°C. 

Fig. 6. The average bias (top) and root mean square error (RMSE; bottom) at different 
thresholds for the retrievals of (a, d) qr; (b, e) qs; (c, f) qg for Exp-ZT (blue solid line), Exp-BG 
(red solid line) and Exp-BG-Err (red dashed line) relative to the Truth Run over the whole cycle. 

Fig. 7. Analysis of (a-d) rain at about 2km AGL, (e-h) snow and (i-l) graupel mixing ratio at 
about 6km AGL. (a), (e), (i) is the analysis for Truth Run, (b), (f), (j) is for Exp-ZT, (c), (g), (k) 
is for Exp-BG and (d), (h), (l) is for Exp-BG-Err. The analysis time is 1700 UTC. 

Fig. 8. Vertical cross-sections of the hydrometeor mixing ratio fields: qg (color shading), qs 

(blue contours), qr (green contours) from (a-c) Truth; (d-f) CTRL; (g-i) Exp-ZT; (j-l) Exp-BG 
and (m-o) Exp-BG-Err. Legend for the color shadings for qg (g kg−1) is shown on the bottom. 
The contour intervals of qs (g kg−1) are 0.1, 0.2, 0.5, 1.0, 2.5. The contour intervals of qr (g kg−1) 
are 0.01, 0.1, 0.2, 0.5, 1.0. The three columns represent the 15, 30 and 60 min forecasts 
initialized at 1500 UTC, respectively. The locations of the vertical cross sections are shown in 
line AB in Fig. 3. 
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Fig. 9. Vertical cross sections of the temporal evolution of horizontally-averaged hydrometeor 
mixing ratios in the first 60 minutes over the convective center (units: g kg-1) of (a-c) Truth 
Run; (d-f) CTRL; (g-i) Exp-ZT; (j-l) Exp-BG; and (m-o) Exp-BG-Err. The forecasts are 
initiated at 1500 UTC. The calculation region is denoted by the blue box in Fig. 3. 

Fig. 10. Composite reflectivity forecasts initialized at 1500 UTC from (a-c) Truth; (d-f) 
CTRL; (g-i) Exp-ZT, (j-l) Exp-BG and (m-o) Exp-BG-Err. The three columns represent the 1-
hour forecast, 2-hour forecast and 3-hour forecasts, respectively. 

Fig. 11. Hourly accumulated precipitation rates (mm) of the last cycle for (a-c) Truth, (d-f) 
CTRL, (g-i) Exp-ZT, and (j-l) Exp-BG, and (m-o) Exp-BG-Err. The three columns represent 
the accumulated precipitation during the first hour, second hour and third hour’s forecast, 
respectively. The red frame indicates the diagnosed region in Fig. 14 and 15. 

Fig. 12. Averaged Fractions Skill Scores of the hourly-accumulated precipitation forecasts for 
thresholds of 2.5 mm, 5 mm and 15 mm for CTRL, Exp-ZT, Exp-BG and Exp-BG-Err over 
the whole cycle. The radius of influence of the neighborhood method used in this study is 
about 15 km and the scoring area covers the entire precipitation area in Fig. 11. 

Fig. 13. Time series of the analysis and forecast RMSEs of (a) qr at 850hPa, (b) qs at 400hPa, 
(c) qg at 300hPa and (d) qv at 700hPa for the whole cycle. 

Fig. 14. Cross sections of temperature fields (shaded; K) for (a-c) the difference between Exp-
ZT and the Truth Run and (d-f) the difference between Exp-ZT and the Truth Run over the 
rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red frame in Fig. 
11(f). (a, d) are the analyses valid at 1700 UTC. (b, e) are the 10-min forecasts initiated at 
1700UTC. (c, f) are the 3-hour forecasts initiated at 1700 UTC. 

Fig 15. Cross sections of relative humidity fields (shaded; %) for (a-c) Truth, (d-f) the difference 
between Exp-ZT and the Truth Run, and (g-i) the difference between Exp-BG and the Truth 
Run over the rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red 
frame in Fig. 11(f). (a, d, g) are the analyses valid at 1700 UTC. (b, e, h) are the 10-min 
forecasts initiated at 1700 UTC. (c, f, i) are the 3-hour forecasts initiated at 1700 UTC. 
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Fig. 1. Domain size and radars used in the study. The range for each radar is shown 

roughly by the blue circle. 
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Fig. 2. Schematic diagram showing the assimilation and forecast cycles in the OSSEs. 
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Fig. 3. Composite radar reflectivity fields of the truth simulation in domain D02. The valid 
forecast time is shown above each panel. The black lines in (b) and (d) indicate the locations of 
the vertical cross sections shown in Fig. 5 and 6. The small blue box in (b) indicates the 
hydrometeor calculation region in Fig. 9. 
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Fig. 4. The vertical profiles of the each hydrometeor’s contribution to the total reflectivity in 

different reflectivity ranges at 1500 UTC. (A)- (e) shows the distribution of Cx with height in 

different reflectivity intervals, where ���#: < 

15���; ���$: 15~25���; ���%: 25~35���; ���&: 35~45���; ���': ≥ 45���. 
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Fig. 5. Vertical cross-sections of the hydrometeor mixing ratio fields: qg (color shading), qs 

(blue contours), qr (green contours) from (a), (e) Truth Run; (b), (f) Exp-ZT; (c), (g) Exp-BG; 
(d), (h) Exp-BG-Err. Legend for the color shadings for qg (g kg−1) is shown on the bottom. The 
contour intervals of qs (g kg−1) are 0.1, 0.2, 0.5, 1.0, 2.5. The contour intervals of qr (g kg−1) are 
0.01, 0.1, 0.2, 0.5, 1.0. The locations of the vertical cross sections are denoted by the black lines 
in Fig. 3. (A)-(d) is valid at 1500 UTC and (e)-(h) is valid at 1700 UTC. The dashed black line 
indicates where the temperature is 0°C. 
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Fig. 6. The average bias (top) and root mean square error (RMSE; bottom) at different 
thresholds for the retrievals of (a, d) qr; (b, e) qs; (c, f) qg for Exp-ZT (blue solid line), Exp-BG 
(red solid line) and Exp-BG-Err (red dashed line) relative to the true simulation over the whole 
cycle. 
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 921 

Fig. 7. Analysis of (a-c) rain at about 2km AGL, (d-f) snow and (g-i) graupel mixing ratio at 
about 6km AGL. (a), (d), (g) is the analysis for Truth Run, (b), (e), (h) is for Exp-ZT, (c), (f), 
(i) is for Exp-BG and (d), (h), (l) is for Exp-BG. The analysis time is 1700 UTC.  
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Fig. 8. Vertical cross-sections of the hydrometeor mixing ratio fields: qg (color shading), qs 
(blue contours), qr (green contours) from (a-c) Truth; (d-f) CTRL; (g-i) Exp-ZT; (j-l) Exp-BG 
and (m-o) Exp-BG-Err. Legend for the color shadings for qg (g kg−1) is shown on the bottom. 
The contour intervals of qs (g kg−1) are 0.1, 0.2, 0.5, 1.0, 2.5. The contour intervals of qr (g kg−1) 
are 0.01, 0.1, 0.2, 0.5, 1.0. The three columns represent the 15, 30 and 60 min forecasts 
initialized at 1500 UTC, respectively. The locations of the vertical cross sections are shown in 
line AB in Fig. 3. 
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Fig. 9. Vertical cross sections of the temporal evolution of horizontally-averaged hydrometeor 
mixing ratios in the first 60 minutes over the convective center (units: g kg-1) of (a-c) Truth 
Run; (d-f) CTRL; (g-i) Exp-ZT; (j-l) Exp-BG; and (m-o) Exp-BG-Err. The forecasts are 
initiated at 1500 UTC. The calculation region is denoted by the blue box in Fig. 3. 

   

934 
935 
936 
937 

938 



38 
 

 939 

Fig. 10. Composite reflectivity forecasts initialized at 1500 UTC from (a-c) Truth; (d-f) 
CTRL; (g-i) Exp-ZT, (j-l) Exp-BG and (m-o) Exp-BG-Err. The three columns represent the 1-
hour forecast, 2-hour forecast and 3-hour forecasts, respectively. 
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 944 

Fig. 11. Hourly accumulated precipitation rates (mm) of the last cycle for (a-c) Truth, (d-f) 945 
CTRL, (g-i) Exp-ZT, and (j-l) Exp-BG, and (m-o) Exp-BG-Err. The three columns represent 946 
the accumulated precipitation during the first hour, second hour and third hour’s forecast, 947 
respectively. The red frame indicates the diagnosed region in Fig. 15 and 16. 948 
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 958 

Fig. 12. Averaged Fractions Skill Scores of the hourly-accumulated precipitation forecasts for 
thresholds of 2.5 mm, 5 mm and 10 mm for CTRL, Exp-ZT, Exp-BG and Exp-BG-Err over 
the whole cycle. The radius of influence of the neighborhood method used in this study is 
about 15 km and the scoring area covers the entire precipitation area in Fig. 11.  
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Fig. 13. Time series of the analysis and forecast RMSEs of (a) qr at 850hPa, (b) qs at 400hPa, 
(c) qg at 300hPa and (d) qv at 700hPa for the whole cycle. 
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Fig. 14. Cross sections of temperature fields (shaded; K) for (a-c) the difference between Exp-
ZT and the Truth Run and (d-f) the difference between Exp-ZT and the Truth Run over the 
rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red frame in Fig. 
11(f). (a, d) are the analyses valid at 1700 UTC. (b, e) are the 10-min forecasts initiated at 
1700UTC. (c, f, i) are the 3-hour forecasts initiated at 1700 UTC. 
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 993 

Fig 15. Cross sections of relative humidity fields (shaded; %) for (a-c) Truth, (d-f) the difference 
between Exp-ZT and the Truth Run, and (g-i) the difference between Exp-BG and the Truth 
Run over the rainfall center from 24.2°N to 24.8°N. The rainfall center is denoted by the red 
frame in Fig. 11(f). (a, d, g) are the analyses valid at 1700 UTC. (b, e, h) are the 10-min 
forecasts initiated at 1700 UTC. (c, f, i) are the 3-hour forecasts initiated at 1700 UTC.  
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